Why is programming difficult?
Attila Egri-Nagy

v2018.03.10

It is often debated whether programming is difficult or not. However,
at some point every developer hits a wall, when writing software
becomes challenging. Where does the difficulty come from? This can
be answered simply: in order to program a computer, one has to be a
computer.

Programming is the act of creating computer programs. On the
surface it looks like just writing weird looking text, obeying strict
rules. However, the point is that the written source code generates
processes in computing devices. The outcome of such a computa-
tional process is either a desirable piece of information (output), or
the dynamics itself is a required behaviour (interactive applications,
servers).

When programming, what are we doing exactly? First, we need to
imagine a computational process we want to create. Second, we
have to code that into a particular language. Alternatively, in ex-
ploratory programming, we write the code first, then after seeing the
result, we try to imagine the process.

The coding part is easier, since programming languages are
smaller and by design simpler than natural languages. It is way
quicker to learn a programming language than a foreign language.
Therefore, the difficulty must be in the imagination part.

Imagining computation means playing out a symbolic mechanism
in our head. Our brain is the runtime, we execute the code in our
thinking. When writing assembly code, we envision bit-flips in reg-
isters and track data moving between memory and the processor. In
object-oriented programming we have to picture the interaction pat-
terns in the relation network of objects. In functional programming
we have to visualize the structure of function calls and the substitu-
tion of arguments.

We emulate the computer by thinking about the running code.

In other words, there is a morphic relation between the computation
happening in the computer and our thoughts. By emulation we mean
a strict one-to-one correspondence, or to use the technical term, an
isomorphism. Today, almost any computer can recreate the behaviour
of 8-bit computers from the 8o’s. That is not surprising at all. A more
powerful machine can emulate a less powerful one, simply by having
more memory and faster processors to make up for any difference
between the machines. Doing the other way around, trying to em-
ulate a computer with less resources, difficulties arise. This is what

“ To understand a program you must
become both the machine and the

”

program.

Alan J. Perlis. Special feature: Epi-
grams on programming. ACM SIG-
PLAN Notices, 17(9):7-13, 1982

Programming is just one activity in
software engineering, which is a lot
bigger endeavour. To start with, it is in
a social context. A product is created by
people for users, who are also human
beings. Consequently, its philosophy
is more involved. If we need to single
out a piece of wisdom, ‘Be nice to each
other” might be the most important
maxim to follow. Another source of
problems is the complexity of the
systems we are building.

Coding and programming are often
used as synonyms. Here we view
coding just as a stage of programming.

Which computer exactly? This is a
nontrivial question, which turns out to
be a crucial one in computing education
research. It is called ‘notional machine’,
defined as “an abstract computer
responsible for executing programs of a
particular kind.”

Juha Sorva. Notional machines and
introductory programming educa-
tion. ACM Transactions on Computing
Education, 13(2):8:1-8:31, 2013



WHY IS PROGRAMMING DIFFICULT?

happens when we program.

The brain is a very lousy digital computer. It cannot focus strictly
on a single data item. It is more like an association machine, what-
ever you think of, many other thoughts come into play. It also has

severe limitations in scalability. The great thing about computers that

they do things very fast and process a huge number of data items.
We can keep only a small number things in our head at a time. We

can imagine small cases, but errors might pop up for bigger instances

of problems. We are also not too good in exploring all combinato-
rial possibilities, we tend to check the familiar cases. That’s why we
need to generate our test cases. The brain has vast resources, but of
different type, and often biased evolutionary and culturally.

The history of programming language development can be viewed

as a sustained effort to avoid this difficulty. Language features are
there to reduce the cognitive load. If the machinery is hidden, we
don’t need to imagine it. This of course just pushes the semantics of
the program to a higher level mechanism.

Languages with interactive REPLs (read-eval-print-loop) also ease
the cognitive load. Expressions can be evaluated separately, giving
convenient access to the stages of the computational process. Still,
there is a need to put these parts together and imagine the unfolding
computation. Tracing, the mental execution of source code remains
to be a requirement for programming.

A historical analysis of the develop-
ment of programming through the
corresponding notional machines might
give us useful insights. It hints the
possibility of a cognitive comparison

of language difficulty. Given a reli-

able complexity measure of notional
machine definitions (if such a thing pos-
sible), might benchmark programming
paradigms for education — with the
danger of possibly fuelling flame wars.



